5/4b+7=7/8b=19

Simple and best practice solution for 5/4b+7=7/8b=19 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5/4b+7=7/8b=19 equation:



5/4b+7=7/8b=19
We move all terms to the left:
5/4b+7-(7/8b)=0
Domain of the equation: 4b!=0
b!=0/4
b!=0
b∈R
Domain of the equation: 8b)!=0
b!=0/1
b!=0
b∈R
We add all the numbers together, and all the variables
5/4b-(+7/8b)+7=0
We get rid of parentheses
5/4b-7/8b+7=0
We calculate fractions
40b/32b^2+(-28b)/32b^2+7=0
We multiply all the terms by the denominator
40b+(-28b)+7*32b^2=0
Wy multiply elements
224b^2+40b+(-28b)=0
We get rid of parentheses
224b^2+40b-28b=0
We add all the numbers together, and all the variables
224b^2+12b=0
a = 224; b = 12; c = 0;
Δ = b2-4ac
Δ = 122-4·224·0
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{144}=12$
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-12}{2*224}=\frac{-24}{448} =-3/56 $
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+12}{2*224}=\frac{0}{448} =0 $

See similar equations:

| 2p+-4=-10 | | 5/6=81/n | | 5=-7+4j | | 8x+14=188 | | -6-2m=10. | | 6yy=10 | | 8x+14=174 | | 9=-9+2v | | 9+4(x-7)=3-6(x-7) | | -x-9=1-x | | 180=(360-x)-x | | 3x+27=26 | | 19x-(3x-8)=72 | | 2/3x^2-2=4 | | 13-4x=-31 | | X+136=x+56 | | 11x-6=9x+14 | | 35=252+-x | | 4(6x+7)-(3x-5)=40 | | 16=w+4 | | 6-4(6x+7)-(3x-5)=40 | | 6(r-4)+3r=12r-8 | | 11x+14=9x | | 3=q-3 | | 1/5+6=3/5x+5 | | 79+x=x+119 | | (3x+20)+70=180 | | 1=u-10 | | H(t)=-32t^2+288t+1152 | | (3x+20)+170=180 | | 2x+1/4+x+1/2=5 | | 10x+9=19x-3 |

Equations solver categories