6-3/4x=1/2x-4

Simple and best practice solution for 6-3/4x=1/2x-4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6-3/4x=1/2x-4 equation:



6-3/4x=1/2x-4
We move all terms to the left:
6-3/4x-(1/2x-4)=0
Domain of the equation: 4x!=0
x!=0/4
x!=0
x∈R
Domain of the equation: 2x-4)!=0
x∈R
We get rid of parentheses
-3/4x-1/2x+4+6=0
We calculate fractions
(-6x)/8x^2+(-4x)/8x^2+4+6=0
We add all the numbers together, and all the variables
(-6x)/8x^2+(-4x)/8x^2+10=0
We multiply all the terms by the denominator
(-6x)+(-4x)+10*8x^2=0
Wy multiply elements
80x^2+(-6x)+(-4x)=0
We get rid of parentheses
80x^2-6x-4x=0
We add all the numbers together, and all the variables
80x^2-10x=0
a = 80; b = -10; c = 0;
Δ = b2-4ac
Δ = -102-4·80·0
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{100}=10$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-10}{2*80}=\frac{0}{160} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+10}{2*80}=\frac{20}{160} =1/8 $

See similar equations:

| 7c+6c=45 | | 0=14t-5t^2 | | x-15=2(x-53) | | -2(-p-6)=8p-12 | | (x+13)+(63)+(3x)=180 | | 9+5n=34 | | 16x+6=18x | | (63)+(3x)+(x+13)=180 | | -25+v=6v-(5-8v) | | (3x)+(18x)+(5x-2)=180 | | 7x+22=x+70 | | X+41+3x+9=180 | | 68+65+x+x=180 | | 81+3x-16+22=180 | | 3x+1-6x=4x+11-9x | | 4x-0.3=0.5×-6 | | 36=18x | | 6x+3=88 | | X+41+3x+9=~×∆ | | 6(x-5)=7x+3 | | 70=7x+35 | | 8h+130=210 | | 3z-5(3z+2)=2-5(-4-z) | | -7x-37=-7-2(-2x+4) | | 2x*2-32=0 | | 35=7x+35 | | 49=10+f/5 | | X-12+x=84 | | 51/2-1u=9/4 | | 12=h/9 | | -7x-37=-7-2(-2x+4 | | 2+6x=98 |

Equations solver categories