If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6-3(2x-3)=5(6-x)4x
We move all terms to the left:
6-3(2x-3)-(5(6-x)4x)=0
We add all the numbers together, and all the variables
-3(2x-3)-(5(-1x+6)4x)+6=0
We multiply parentheses
-6x-(5(-1x+6)4x)+9+6=0
We calculate terms in parentheses: -(5(-1x+6)4x), so:We add all the numbers together, and all the variables
5(-1x+6)4x
We multiply parentheses
-20x^2+120x
Back to the equation:
-(-20x^2+120x)
-(-20x^2+120x)-6x+15=0
We get rid of parentheses
20x^2-120x-6x+15=0
We add all the numbers together, and all the variables
20x^2-126x+15=0
a = 20; b = -126; c = +15;
Δ = b2-4ac
Δ = -1262-4·20·15
Δ = 14676
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{14676}=\sqrt{4*3669}=\sqrt{4}*\sqrt{3669}=2\sqrt{3669}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-126)-2\sqrt{3669}}{2*20}=\frac{126-2\sqrt{3669}}{40} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-126)+2\sqrt{3669}}{2*20}=\frac{126+2\sqrt{3669}}{40} $
| 3=7(h-2 | | 132z+33/484=44z-7/44 | | 2(x-8)=-3(x+3 | | 3(x+6)+3x=3(-9-x) | | -4*k*(5-k)=0 | | 10^x=4/3 | | -5b+24=-8(b-6+6b | | 2/7*(14x-21)=0 | | 50n=2000 | | 132z+33/484-44z+308/44=0 | | 5= 23(8x−6) | | 3z/11+3/44=z-7/44 | | N,n+1,n+2=57 | | 3×1x-4=21 | | 0.5x+12=13.5 | | 8x-(16-10x)=-2x-16 | | 4/y−4=5 | | 2z^2+2z=40 | | X(x+8)=950 | | X(x+8)=244 | | 21x+59=6 | | 3=7/x | | 2x+1/4=3x+5/4 | | w4=8 | | 14+3y=-3y-18 | | 5x-2x=2x+1 | | 2(-x+4)=-22 | | 63-x+x=63 | | 2(-x+6)=15 | | X+3x+160-(x+3x)=160 | | (3x^2+1)^2=0 | | -0,1x=0,2 |