If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X(X+8)=950
We move all terms to the left:
X(X+8)-(950)=0
We multiply parentheses
X^2+8X-950=0
a = 1; b = 8; c = -950;
Δ = b2-4ac
Δ = 82-4·1·(-950)
Δ = 3864
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3864}=\sqrt{4*966}=\sqrt{4}*\sqrt{966}=2\sqrt{966}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{966}}{2*1}=\frac{-8-2\sqrt{966}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{966}}{2*1}=\frac{-8+2\sqrt{966}}{2} $
| X(x+8)=244 | | 21x+59=6 | | 3=7/x | | 2x+1/4=3x+5/4 | | w4=8 | | 14+3y=-3y-18 | | 5x-2x=2x+1 | | 2(-x+4)=-22 | | 63-x+x=63 | | 2(-x+6)=15 | | X+3x+160-(x+3x)=160 | | (3x^2+1)^2=0 | | -0,1x=0,2 | | 7x-20=4x-5 | | -x+2,6=-3x+4,6 | | 2x3+4=1032x+4=10 | | -0,5x=1,5 | | -4(x+1)+2x=3(x+3)-5 | | |2x3+4=1032x+4=10 | | -2x+9=4x-3 | | -3(x+9)-2x=-2(x+1)-7 | | 4(x-1,4)+2x=-3(x+1)-2,6 | | 2(x+4,3)+3x=-3(x+1)+3,6 | | -2(-3x+0,3)=5,4 | | 2(-x+4)=44 | | 2x-8,8=4x-4,8 | | 9(-x+3)=28 | | 1/3(d-7)-7/2(5d-3)=7/12 | | 3x-22=-19 | | 3x-22=19 | | 3^2x-28(3x)=-27 | | 3^(2x-28(3x)+27=0 |