6-2/9x+(-3)=1/3x+4

Simple and best practice solution for 6-2/9x+(-3)=1/3x+4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6-2/9x+(-3)=1/3x+4 equation:



6-2/9x+(-3)=1/3x+4
We move all terms to the left:
6-2/9x+(-3)-(1/3x+4)=0
Domain of the equation: 9x!=0
x!=0/9
x!=0
x∈R
Domain of the equation: 3x+4)!=0
x∈R
We add all the numbers together, and all the variables
-2/9x-(1/3x+4)+3=0
We get rid of parentheses
-2/9x-1/3x-4+3=0
We calculate fractions
(-6x)/27x^2+(-9x)/27x^2-4+3=0
We add all the numbers together, and all the variables
(-6x)/27x^2+(-9x)/27x^2-1=0
We multiply all the terms by the denominator
(-6x)+(-9x)-1*27x^2=0
Wy multiply elements
-27x^2+(-6x)+(-9x)=0
We get rid of parentheses
-27x^2-6x-9x=0
We add all the numbers together, and all the variables
-27x^2-15x=0
a = -27; b = -15; c = 0;
Δ = b2-4ac
Δ = -152-4·(-27)·0
Δ = 225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{225}=15$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-15}{2*-27}=\frac{0}{-54} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+15}{2*-27}=\frac{30}{-54} =-5/9 $

See similar equations:

| 3(x+2)=14-4 | | −14+6 | | -2(4g–3)=30 | | 9s-5s+2=10 | | 5x+4+3x+16=180 | | 15k+19=13k-19 | | ?x3=42 | | 2(m+3)+5=-7 | | 9f-15=11f+5 | | −9+x=12 | | 6=2x=9+x | | 5n-2=-92 | | 50=-6y+8 | | -2r+7=4r-17 | | 4(-k-1)=-9-3k | | 6y-3y-6=y+2y+24 | | -2(3x+3)-9=6x | | -2s+1=11.8 | | (D^2-2D+4)^2y=0 | | 2−h=1 | | 3/4(48-16x)=4(9-3x) | | 9x+6=4x+19 | | 4x+6=220 | | 5/4r=-4/3 | | 14-3.72x=0 | | -3x-1/2=7x+5/2 | | 4|2x+6|+10=18 | | 50=-2(3y+-4) | | 2x−3=−4x+9 | | 16w=10w | | (X+3)5=(x-7)10 | | 7(x-4)-2=5 |

Equations solver categories