6+7/4z=24+z

Simple and best practice solution for 6+7/4z=24+z equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6+7/4z=24+z equation:



6+7/4z=24+z
We move all terms to the left:
6+7/4z-(24+z)=0
Domain of the equation: 4z!=0
z!=0/4
z!=0
z∈R
We add all the numbers together, and all the variables
7/4z-(z+24)+6=0
We get rid of parentheses
7/4z-z-24+6=0
We multiply all the terms by the denominator
-z*4z-24*4z+6*4z+7=0
Wy multiply elements
-4z^2-96z+24z+7=0
We add all the numbers together, and all the variables
-4z^2-72z+7=0
a = -4; b = -72; c = +7;
Δ = b2-4ac
Δ = -722-4·(-4)·7
Δ = 5296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{5296}=\sqrt{16*331}=\sqrt{16}*\sqrt{331}=4\sqrt{331}$
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-72)-4\sqrt{331}}{2*-4}=\frac{72-4\sqrt{331}}{-8} $
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-72)+4\sqrt{331}}{2*-4}=\frac{72+4\sqrt{331}}{-8} $

See similar equations:

| 2/5a+2=-3/10a-5 | | 2(15c+11)=–8 | | -6(-1-5b)=-114 | | -s+4=-18+7s-18 | | 5(2x+-4)+-11=4+3x | | 3x-5+1=180 | | -5(5+3x)+7=87 | | 3x(x+2)=90 | | (36-12x)=4(4+2x) | | 4(x+5)+4=-4(3x+2) | | –y3=1 | | (1/4)(7/2)=n | | p÷8=16 | | 3x(x+2)=180 | | 54=-6b | | -6=3(-5+e) | | 1/47/2=n | | m/2=2/3 | | 5x-2x+8=x+6 | | (36-16x)=4(4+2x) | | |x−50|=15, | | 2-4(3x+6)=4(2x+3)+46 | | 2x+4=8-1 | | 6s-12=24 | | -7=3x+517 | | -8(n+5)=-88+8n | | –18=2r | | -13y+9=18-16y | | 6x−4=3x+5 | | 1/4x7/2= | | 4(x-2)+8=32 | | (x+10)=128 |

Equations solver categories