6+6/5x=9/10x

Simple and best practice solution for 6+6/5x=9/10x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6+6/5x=9/10x equation:



6+6/5x=9/10x
We move all terms to the left:
6+6/5x-(9/10x)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
Domain of the equation: 10x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
6/5x-(+9/10x)+6=0
We get rid of parentheses
6/5x-9/10x+6=0
We calculate fractions
60x/50x^2+(-45x)/50x^2+6=0
We multiply all the terms by the denominator
60x+(-45x)+6*50x^2=0
Wy multiply elements
300x^2+60x+(-45x)=0
We get rid of parentheses
300x^2+60x-45x=0
We add all the numbers together, and all the variables
300x^2+15x=0
a = 300; b = 15; c = 0;
Δ = b2-4ac
Δ = 152-4·300·0
Δ = 225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{225}=15$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-15}{2*300}=\frac{-30}{600} =-1/20 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+15}{2*300}=\frac{0}{600} =0 $

See similar equations:

| 5x+2/3=3x-10/2 | | x÷15=81/3 | | 6^8=7^a | | 6x+7=7x+2 | | -1/2x+6x+2=20 | | e^2=124 | | F(x)=3/4x+9 | | 3,5q+40=-0,3q+160 | | 5+t/25=14 | | x-4/8=41/4 | | 4x-4=-6x-12+48 | | 5(x+8)=4(x-6) | | 10x-4=4x(3-2x) | | 5/4+35/4=2x-1 | | j/4-15=-5 | | 580-51x+x^2=0 | | 8+2x=-22 | | 16+10i=0 | | -11x+12x-13=-9 | | 7c+2=5c+24 | | 5x-3(x-4)=-8+4x+10 | | x+35/8=71/4 | | 8x+22=12x-2 | | 4n-40=7n+63 | | 2x+12x-24=4-(6x+2) | | 5x3/10=15/10 | | 7/9x-6.3=4.5 | | S+(-s+100)=2(3s-46) | | 2x+15=7(x-5) | | 10x+35=x^2+40 | | 6v^2-5v-25=9 | | 3(x+11)=15x+9 |

Equations solver categories