10x-4=4x(3-2x)

Simple and best practice solution for 10x-4=4x(3-2x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 10x-4=4x(3-2x) equation:



10x-4=4x(3-2x)
We move all terms to the left:
10x-4-(4x(3-2x))=0
We add all the numbers together, and all the variables
10x-(4x(-2x+3))-4=0
We calculate terms in parentheses: -(4x(-2x+3)), so:
4x(-2x+3)
We multiply parentheses
-8x^2+12x
Back to the equation:
-(-8x^2+12x)
We get rid of parentheses
8x^2-12x+10x-4=0
We add all the numbers together, and all the variables
8x^2-2x-4=0
a = 8; b = -2; c = -4;
Δ = b2-4ac
Δ = -22-4·8·(-4)
Δ = 132
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{132}=\sqrt{4*33}=\sqrt{4}*\sqrt{33}=2\sqrt{33}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{33}}{2*8}=\frac{2-2\sqrt{33}}{16} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{33}}{2*8}=\frac{2+2\sqrt{33}}{16} $

See similar equations:

| 5/4+35/4=2x-1 | | j/4-15=-5 | | 580-51x+x^2=0 | | 8+2x=-22 | | 16+10i=0 | | -11x+12x-13=-9 | | 7c+2=5c+24 | | 5x-3(x-4)=-8+4x+10 | | x+35/8=71/4 | | 8x+22=12x-2 | | 4n-40=7n+63 | | 2x+12x-24=4-(6x+2) | | 5x3/10=15/10 | | 7/9x-6.3=4.5 | | S+(-s+100)=2(3s-46) | | 2x+15=7(x-5) | | 10x+35=x^2+40 | | 6v^2-5v-25=9 | | 3(x+11)=15x+9 | | 760-51x+x^2=0 | | x+21.9=27.1 | | 4x+17=6x+8 | | 0.12-0.4(x+1)+x=0.5x+2 | | (S)+(-s+100)=2(3s-46) | | 7x+12x-10=50 | | x-236=450 | | n×n=18 | | 3/7r=15/16 | | 3x-2=-1/2x+5 | | 6x/8–4=20 | | -7+x=9-3x | | x(x+1)(x+2)(x+3)(x+4)=460 |

Equations solver categories