6+(1x-5)=2(-1x+4)

Simple and best practice solution for 6+(1x-5)=2(-1x+4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6+(1x-5)=2(-1x+4) equation:


Simplifying
6 + (1x + -5) = 2(-1x + 4)

Reorder the terms:
6 + (-5 + 1x) = 2(-1x + 4)

Remove parenthesis around (-5 + 1x)
6 + -5 + 1x = 2(-1x + 4)

Combine like terms: 6 + -5 = 1
1 + 1x = 2(-1x + 4)

Reorder the terms:
1 + 1x = 2(4 + -1x)
1 + 1x = (4 * 2 + -1x * 2)
1 + 1x = (8 + -2x)

Solving
1 + 1x = 8 + -2x

Solving for variable 'x'.

Move all terms containing x to the left, all other terms to the right.

Add '2x' to each side of the equation.
1 + 1x + 2x = 8 + -2x + 2x

Combine like terms: 1x + 2x = 3x
1 + 3x = 8 + -2x + 2x

Combine like terms: -2x + 2x = 0
1 + 3x = 8 + 0
1 + 3x = 8

Add '-1' to each side of the equation.
1 + -1 + 3x = 8 + -1

Combine like terms: 1 + -1 = 0
0 + 3x = 8 + -1
3x = 8 + -1

Combine like terms: 8 + -1 = 7
3x = 7

Divide each side by '3'.
x = 2.333333333

Simplifying
x = 2.333333333

See similar equations:

| ln(a)+ln(2a)=3 | | 28/y=9 | | -(-1a+3)=5(3-a)+2 | | 136=4(3w-5)+3w+6 | | 2(1x-5)=3(-1x+5) | | log(7)[6x-12]=log(7)[x^2-4] | | N=x | | u^2+16u=0 | | 3(3x+6)=2(3x-6) | | (3x+4)+(1x+1)=2(x+2) | | 4(x+2)-2(x+4)=2(x-3) | | 728x+67=738 | | 728x+67=7382 | | 165849u+556=174839 | | 8n-9=1 | | u^2-15u+14=0 | | P(x)=x^3-x^2+x-2 | | 14-3*x=8 | | c(2c-1)=0 | | -2+3+2x=4-(x-9) | | y^2+6y+63=0 | | 2a-18=3a-27 | | 10x/36+x/155=50 | | 2(x-1)+3=4-(x-9) | | 8y-7=2y+13 | | 3a-18=a+27 | | x^2-kx+k= | | 4c=3+3x | | (4x-5w)(7x-6w)= | | 25k^2+31k+6=0 | | cos(2A)=2cos^2(A)-1 | | (fx)=5x^2In(3x) |

Equations solver categories