6(z-2)=4(z-3)z

Simple and best practice solution for 6(z-2)=4(z-3)z equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6(z-2)=4(z-3)z equation:



6(z-2)=4(z-3)z
We move all terms to the left:
6(z-2)-(4(z-3)z)=0
We multiply parentheses
6z-(4(z-3)z)-12=0
We calculate terms in parentheses: -(4(z-3)z), so:
4(z-3)z
We multiply parentheses
4z^2-12z
Back to the equation:
-(4z^2-12z)
We get rid of parentheses
-4z^2+6z+12z-12=0
We add all the numbers together, and all the variables
-4z^2+18z-12=0
a = -4; b = 18; c = -12;
Δ = b2-4ac
Δ = 182-4·(-4)·(-12)
Δ = 132
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{132}=\sqrt{4*33}=\sqrt{4}*\sqrt{33}=2\sqrt{33}$
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-2\sqrt{33}}{2*-4}=\frac{-18-2\sqrt{33}}{-8} $
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+2\sqrt{33}}{2*-4}=\frac{-18+2\sqrt{33}}{-8} $

See similar equations:

| 2x+6+12=52 | | 3(2x-5)+2=6x-13 | | 5x=25=50 | | 3x−(5x+7)=2x−3 | | 5y-(-4y+6)=3 | | 7x+30=-5x-6 | | -3(3+x+4(x-4)=-4 | | z/7=-1 | | 7+x+5=4x-3. | | 2x-3x+17=4-2x-5 | | x+49+80=180 | | 120+x+127=180 | | W=2w-8 | | 2(2t-3)=12 | | 5x+4+15x+36=180 | | -8=-5+s | | -7(y-12)=-7y | | 6x+2=7+5x | | 15x+6=10x21 | | 7y27,y=4 | | 15=4(x-7)+1 | | 12a+5-6a=-1 | | -5a-5(2-8a)=-80 | | 6x+12=10+30x+2 | | 3+10v=9v | | 2(c-10)=2 | | 9n-16-1=+3n | | 5x+4+5x+36=180 | | 4x-5x+9=5x-9; | | 4t=-32/4 | | 8+-7=20-t | | 3(x+12)+1=x+2(4+x) |

Equations solver categories