6(x+2)=8x(x+4)

Simple and best practice solution for 6(x+2)=8x(x+4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6(x+2)=8x(x+4) equation:



6(x+2)=8x(x+4)
We move all terms to the left:
6(x+2)-(8x(x+4))=0
We multiply parentheses
6x-(8x(x+4))+12=0
We calculate terms in parentheses: -(8x(x+4)), so:
8x(x+4)
We multiply parentheses
8x^2+32x
Back to the equation:
-(8x^2+32x)
We get rid of parentheses
-8x^2+6x-32x+12=0
We add all the numbers together, and all the variables
-8x^2-26x+12=0
a = -8; b = -26; c = +12;
Δ = b2-4ac
Δ = -262-4·(-8)·12
Δ = 1060
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1060}=\sqrt{4*265}=\sqrt{4}*\sqrt{265}=2\sqrt{265}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-26)-2\sqrt{265}}{2*-8}=\frac{26-2\sqrt{265}}{-16} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-26)+2\sqrt{265}}{2*-8}=\frac{26+2\sqrt{265}}{-16} $

See similar equations:

| 4(x-3)=-22 | | 10=-x/5+8 | | x+18=23;5 | | -x-5=54 | | 5/3-5(m-1)=-40/3 | | 5s=55 | | x+6/12=3 | | 30/40=x/56 | | 10-7h=-7h | | -p/7=9 | | 43=5x-26+2x+1 | | k-6=11 | | −6(1-5v)=54 | | 65+40+8x+11=180 | | x/24=9/18 | | -1.8-5x=16.2 | | 5g+4(-6+3g)=1-9 | | 1/2(x+10)=2(2x-7) | | 8=1/6b+9 | | 5+7x=50 | | 14x-7(2x+1)=7 | | 3h+20=6h+92 | | 0.5(2-3x)=4.5-0.1(x | | 12+12x+-20=8x=20 | | Y=27-3x3 | | (2x+10)-(x-4)=21 | | 6x+7=-7+3x+23 | | 69+64+4x+7=180 | | 12(x-5)=11(+5) | | 14x8=8-5x | | -4(5x+5)+6(2+6x)=2(-5+3x)-3 | | 2(4z-11)=3(3z+11-z |

Equations solver categories