6(x+2)=2(2x+15)3x

Simple and best practice solution for 6(x+2)=2(2x+15)3x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6(x+2)=2(2x+15)3x equation:



6(x+2)=2(2x+15)3x
We move all terms to the left:
6(x+2)-(2(2x+15)3x)=0
We multiply parentheses
6x-(2(2x+15)3x)+12=0
We calculate terms in parentheses: -(2(2x+15)3x), so:
2(2x+15)3x
We multiply parentheses
12x^2+90x
Back to the equation:
-(12x^2+90x)
We get rid of parentheses
-12x^2+6x-90x+12=0
We add all the numbers together, and all the variables
-12x^2-84x+12=0
a = -12; b = -84; c = +12;
Δ = b2-4ac
Δ = -842-4·(-12)·12
Δ = 7632
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{7632}=\sqrt{144*53}=\sqrt{144}*\sqrt{53}=12\sqrt{53}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-84)-12\sqrt{53}}{2*-12}=\frac{84-12\sqrt{53}}{-24} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-84)+12\sqrt{53}}{2*-12}=\frac{84+12\sqrt{53}}{-24} $

See similar equations:

| 2(×+5)+3x+5=35 | | 3x-5(2x+4)=6-5(x-2 | | 2=x4+1 | | 6(3+6a)=36a | | 7y-4=2y-6 | | 4w+5=3w+4 | | 4(x+18)+2(x+30)=12 | | 1/3x+8=28 | | -9-88x=-3(7+4x) | | 17x-23+8x-4+3x+14=180 | | -2(x-8)=4-3x | | 3(x+9)=-42 | | 0.06h=13.02 | | 7x=6=5x | | 1/2(4x+14)=2(x−7)G | | 10x+7+15x-2=180 | | 6x+x=+3-2x | | 4+4x-7=16 | | y-562=188 | | -27r=-756 | | -5(x+6)-4=-49 | | 8(x+3)-2(3+2x)=-4(2x-2)+6-4x | | y+31=61 | | 3x+x+12+2x+2x+4=360 | | -13j=-286 | | -3(8k+5)=3(9-k)= | | 12=-w24+20 | | 81=9a-81 | | x+64+134+x=180 | | x^2+4=3x^2+5x-8 | | 54x4-1=1 | | 42=d+6 |

Equations solver categories