If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6(3r-4)=(3/8)(46r+8)
We move all terms to the left:
6(3r-4)-((3/8)(46r+8))=0
Domain of the equation: 8)(46r+8))!=0We add all the numbers together, and all the variables
r∈R
6(3r-4)-((+3/8)(46r+8))=0
We multiply parentheses
18r-((+3/8)(46r+8))-24=0
We multiply parentheses ..
-((+138r^2+3/8*8))+18r-24=0
We multiply all the terms by the denominator
-((+138r^2+3+18r*8*8))-24*8*8))=0
We calculate terms in parentheses: -((+138r^2+3+18r*8*8)), so:We add all the numbers together, and all the variables
(+138r^2+3+18r*8*8)
We get rid of parentheses
138r^2+18r*8*8+3
Wy multiply elements
138r^2+1152r*8+3
Wy multiply elements
138r^2+9216r+3
Back to the equation:
-(138r^2+9216r+3)
-(138r^2+9216r+3)=0
We get rid of parentheses
-138r^2-9216r-3=0
a = -138; b = -9216; c = -3;
Δ = b2-4ac
Δ = -92162-4·(-138)·(-3)
Δ = 84933000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{84933000}=\sqrt{900*94370}=\sqrt{900}*\sqrt{94370}=30\sqrt{94370}$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9216)-30\sqrt{94370}}{2*-138}=\frac{9216-30\sqrt{94370}}{-276} $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9216)+30\sqrt{94370}}{2*-138}=\frac{9216+30\sqrt{94370}}{-276} $
| 2|x|=-80 | | 4(5+2x)-5=3(3- | | 8x-2=2x-40 | | (2x-19)+(x+51)+x=180 | | -1/3(12x-24)=-4+2x | | 7x-3=12x-9 | | 0.4(3x-6)=1.6 | | (2x-19)+(x+15)+x=180 | | -11b=11 | | 250/9=x^2+9 | | 6x+4=15x+24 | | Y=1.5y+12 | | 9/2x+5=3/2+17 | | x*9/2=3x | | 3/7=w-1/7 | | -1/2(6x-12)=15-3x | | 1.94x-10/8x+4.32=2(1.15x+8.5)/2 | | 7/9d-1/4=1/3 | | X=44.2+(-0,57y) | | x/3+3x+x+16=180 | | 10x+13x-18=20x+18 | | -0.4x=2.2 | | 25=14x−3 | | 167h+19h+16=1132 | | 6n-11=3+7 | | 23=1/2(9.8)t2 | | 8y=3y+11 | | 1/3x+7=-2/3x+7 | | 1/3(9x-3)+x=7 | | 4k=13=20 | | 4/5x-10=14 | | 8x+4x-14+1=59 |