6(-3v+1)=(-2v2)

Simple and best practice solution for 6(-3v+1)=(-2v2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6(-3v+1)=(-2v2) equation:



6(-3v+1)=(-2v^2)
We move all terms to the left:
6(-3v+1)-((-2v^2))=0
We multiply parentheses
-((-2v^2))-18v+6=0
We calculate terms in parentheses: -((-2v^2)), so:
(-2v^2)
We get rid of parentheses
-2v^2
Back to the equation:
-(-2v^2)
We get rid of parentheses
2v^2-18v+6=0
a = 2; b = -18; c = +6;
Δ = b2-4ac
Δ = -182-4·2·6
Δ = 276
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{276}=\sqrt{4*69}=\sqrt{4}*\sqrt{69}=2\sqrt{69}$
$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-2\sqrt{69}}{2*2}=\frac{18-2\sqrt{69}}{4} $
$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+2\sqrt{69}}{2*2}=\frac{18+2\sqrt{69}}{4} $

See similar equations:

| 2x^2-7x-61=0 | | 22x+4-x=180 | | 22x-4+x=90 | | 170=27x+8 | | 3=9-d | | 4(-x+3)=2x | | 9x+6+3x+2=70 | | (x+14)=(4x+9)=180 | | 2.41n+0.5=1.37n-4.7 | | -17v=-10-16v | | 3x+2+9x+6=70 | | 8(x+12)=18 | | 45/18=5/x | | 3x+6+9x+6=70 | | 14x-4=+5+21 | | 3(2k-5)=4-(3k+7) | | 10=30x+50 | | 13p+1=2p+12 | | 4x=10x-15 | | 18-6x=14+2x | | 14x-4=+15+11 | | 3+6x=2x+72 | | 4(½x+3)=3x+12-x | | 5(1+8a)=245 | | 14x-17=5+12x | | 12-4(2x+9=-8(x+3) | | 1.25x=-6.5050 | | 8/6y-13=-15 | | -4d-2(-3-d)=-14 | | 15-4x=-11-2x | | 3(x+3)=6x+7 | | 7x-4+8x=1+16x |

Equations solver categories