If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5z(2z+8)=0
We multiply parentheses
10z^2+40z=0
a = 10; b = 40; c = 0;
Δ = b2-4ac
Δ = 402-4·10·0
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-40}{2*10}=\frac{-80}{20} =-4 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+40}{2*10}=\frac{0}{20} =0 $
| -4y+2y=-25 | | 2(4x–9)+3=-55 | | -22-2c=5(4c-6) | | −3p+6p= | | -4x+2(3x–8)=10 | | 25=-4(2v+9) | | 9s-5-3s=19 | | 4x=40-10 | | 5^(x+3)+4=12 | | 6(8−2z)=4z | | -17=2n-8n | | 34-x=277 | | -8(7a+2)=8 | | (X+6)(x+6)=-3x | | 7=3p−5 | | 2(4z+5)=19-7z | | 4k-9-8=-21 | | 2c^2=-4 | | 11x+3+4=9 | | c4+ 4=8 | | x-15=-16 | | 9-6(1-2b)=-20 | | F(x)=2+3(x) | | 3-8(1+2c)=-29 | | 20-3x=50-23x | | 10+x=20-10+x | | 3(x-2)^2(x+5)=3(x+1)^2(x-1)+3 | | -7(9d+3)=20-6d | | x2–7x–120=0 | | 666171718818191818189.0999000000000039399382929292992x×9800^x=4 | | 4x+3-x-(6)=0 | | F(x)=5x-7/3 |