If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5y^2-4y-8=0
a = 5; b = -4; c = -8;
Δ = b2-4ac
Δ = -42-4·5·(-8)
Δ = 176
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{176}=\sqrt{16*11}=\sqrt{16}*\sqrt{11}=4\sqrt{11}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4\sqrt{11}}{2*5}=\frac{4-4\sqrt{11}}{10} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4\sqrt{11}}{2*5}=\frac{4+4\sqrt{11}}{10} $
| 3x2+x−2=0 | | 3y=7+8+2y | | -3(p+2)=-27 | | p+11/7=10 | | x+5/x-5-x-5/x+5=20/x^2-25 | | t^2-16t+60=0 | | 3x-12/2=4,5 | | 36+3y=180 | | 1+1+1+1+1+1+1=x | | 75x+14=19 | | 4(x–5)=6x+20 | | 6(2n+3)=9(7n+4)+1 | | -4(2t-3)+3t=4t-5 | | 10d+2=2d+3202 | | 6(x–3)+4=22 | | 6Y=4y+12= | | -4(2t+3)+3t=4t-5 | | 10^x=440 | | 18−x=15 | | 3/5x-17=13-2/5x | | -4x-5x+18=-10x+1 | | 2(10x+5)=30 | | x-11=3x-1 | | 3y-2y^2=-6 | | ۹x=5000 | | x+3/2x=5/8 | | 2^x-3=2^(2x+5) | | 11/2x-2=5+1/2x | | (x-12)^2+39=1483 | | (x-12)^2=1444 | | x^2=-644 | | 2x-1/x=3/x+2 |