If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5y^2-40y-45=0
a = 5; b = -40; c = -45;
Δ = b2-4ac
Δ = -402-4·5·(-45)
Δ = 2500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2500}=50$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-50}{2*5}=\frac{-10}{10} =-1 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+50}{2*5}=\frac{90}{10} =9 $
| 6{v=-2} | | 4x-5/4+3x+1/6=2X | | 4xx=20 | | 2,6–0,2x=4,1–0,5x | | 3+3y=-18 | | 3^3x-x-2=0 | | 39+-3q=99 | | -6=-11+j | | 4x2=3x | | 1=k²(k+1)² | | 4x×x=3x | | x-0,04=-3,3 | | k³=k²(k+1)² | | x-6/9=-5 | | x+2/2=-2 | | 4/3=m+4/1 | | x–17=0 | | 4z/10+3=8 | | 12y=2=10 | | x^2-3x(2x+x)=-x(3+2x)+15 | | 0=3x³-2x²-17 | | z/8+9=1 | | 5,2+x=-12,6 | | 8+4b-b^2=0 | | 7=15-x×2 | | 2. x+14=3 | | 3x-4(2x+1)=6(1-x)-4 | | (x^2-2x)^2-3x^2+6x-4=0 | | 8a-7=a+2 | | 5(x-1)-3(x+3)+8=0 | | 11x+44=70 | | 2-(3-2(x+1))=3x+2(x-(3+2x1) |