If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5y^2-24y+20=0
a = 5; b = -24; c = +20;
Δ = b2-4ac
Δ = -242-4·5·20
Δ = 176
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{176}=\sqrt{16*11}=\sqrt{16}*\sqrt{11}=4\sqrt{11}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-4\sqrt{11}}{2*5}=\frac{24-4\sqrt{11}}{10} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+4\sqrt{11}}{2*5}=\frac{24+4\sqrt{11}}{10} $
| I+4p=6+p | | 32^2x=(6x-1) | | x^2-12x+175=0 | | x-4=-9+5+x | | w÷6=4 | | -7x/6=168 | | 7=1.3x | | 2/3x+7=3/4 | | 5=-14x+7 | | 10x+5=-4x+7 | | 6(2x+1)=102 | | -(1+8x=-31-2x) | | -10+0.5w=1/2w-10 | | 4x2+-4x+-5=8x+6 | | −6y=−24 | | -12d+4d+-13d+15d=-18 | | X/3+x/15=3/5 | | 10+7g=-18 | | 1+4p=5+6p | | -8(b-99)=40 | | -5+k=-23 | | j+12=-14 | | p/4+55=63 | | 8n-18=62 | | 69=15+6p | | 15=4g-5 | | 9=-12-7x | | 15*a=-75 | | 4x+5+3x+112=180 | | m÷6=70 | | 2(u+20)=98 | | 4t=–6+10t |