If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5y^2-18y+9=0
a = 5; b = -18; c = +9;
Δ = b2-4ac
Δ = -182-4·5·9
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-12}{2*5}=\frac{6}{10} =3/5 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+12}{2*5}=\frac{30}{10} =3 $
| 7b2+19b-6=0 | | 8r2+26r+15=0 | | -5(4t-2)+8t=7t-3 | | 3p2-26p-40=0 | | x+10x+2x=100 | | 2m2-19m+24=0 | | x2+11x-180=0 | | 2(9s+4)-12s=2(3s+1)-5 | | x2+16x-57=0 | | w2-15w+54=0 | | p2+15p+50=0 | | 4/3•3.14•62•62•62=x | | 3a+5=-(4a-7) | | y2-3y-40=0 | | x2=2x-48=0 | | z2-9z-36=0 | | n2+7n-30=0 | | a2+11a+28=0 | | y2-5y-14=0 | | 7/3x=-3/14 | | m2-9m+14=0 | | 6401=165x+2771 | | w2-8w-9=0 | | 5c^2+225=0 | | b2-9b-10=0 | | v+9/15=45 | | 2/x+4=9/x+6 | | (P)x=-30+1.5x | | 8x+6=-56 | | 14-10x=-1-15x | | -2(4t-5)+5t=4t-8 | | -24=-6(-10+v) |