If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5y^2+2y=0
a = 5; b = 2; c = 0;
Δ = b2-4ac
Δ = 22-4·5·0
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2}{2*5}=\frac{-4}{10} =-2/5 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2}{2*5}=\frac{0}{10} =0 $
| 11=-11t | | 6=12×-2x | | 2xx=120 | | 4n+1=10 | | -4x=55-64x | | 2x+3÷6=10 | | 5(11x-2=155 | | 8x((1-4x)/8)=7 | | 7x-2=5x=15 | | 6x+5=3x=15 | | 5x-145=0 | | (x+1)(x-1)(x^2+7x)(x-4)-2=2x | | 4(3x-1)³=32 | | 53=8*6/x | | 7x+10=3x-6 | | 7/2x+1=15 | | 53=8(6/x) | | 5x+4=3x-2-3x | | a/6+4=14 | | 3x-8/4=1 | | 12+3k=k | | 15+1x=12 | | (74-28)/2=x | | f/50-1/10=3/10 | | 2/5y+4=5/6y+2 | | 40.80x=40.80x | | -67=5x-1 | | 1.25=27x-40 | | 1.25=25x-40 | | 5x-0.5x=3 | | x/3=x/5+2 | | x/5=x/5+2 |