5x=4/(5x-2)

Simple and best practice solution for 5x=4/(5x-2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5x=4/(5x-2) equation:


D( x )

5*x-2 = 0

5*x-2 = 0

5*x-2 = 0

5*x-2 = 0 // + 2

5*x = 2 // : 5

x = 2/5

x in (-oo:2/5) U (2/5:+oo)

5*x = 4/(5*x-2) // - 4/(5*x-2)

5*x-(4/(5*x-2)) = 0

5*x-4*(5*x-2)^-1 = 0

5*x-4/(5*x-2) = 0

(5*x*(5*x-2))/(5*x-2)-4/(5*x-2) = 0

5*x*(5*x-2)-4 = 0

25*x^2-10*x-4 = 0

25*x^2-10*x-4 = 0

25*x^2-10*x-4 = 0

DELTA = (-10)^2-(-4*4*25)

DELTA = 500

DELTA > 0

x = (500^(1/2)+10)/(2*25) or x = (10-500^(1/2))/(2*25)

x = (10*5^(1/2)+10)/50 or x = (10-10*5^(1/2))/50

(x-((10-10*5^(1/2))/50))*(x-((10*5^(1/2)+10)/50)) = 0

((x-((10-10*5^(1/2))/50))*(x-((10*5^(1/2)+10)/50)))/(5*x-2) = 0

((x-((10-10*5^(1/2))/50))*(x-((10*5^(1/2)+10)/50)))/(5*x-2) = 0 // * 5*x-2

(x-((10-10*5^(1/2))/50))*(x-((10*5^(1/2)+10)/50)) = 0

( x-((10*5^(1/2)+10)/50) )

x-((10*5^(1/2)+10)/50) = 0 // + (10*5^(1/2)+10)/50

x = (10*5^(1/2)+10)/50

( x-((10-10*5^(1/2))/50) )

x-((10-10*5^(1/2))/50) = 0 // + (10-10*5^(1/2))/50

x = (10-10*5^(1/2))/50

x in { (10*5^(1/2)+10)/50, (10-10*5^(1/2))/50 }

See similar equations:

| -4.1-4x-2.2-2x=-5x-6.1 | | -2x+3y-2(-2x-2y+6)=1 | | 2x+5(-5x-9)=162 | | -9x+1=v-80 | | sin(12)=50/y | | 6(5a+3b-2b)=76 | | 14a^2-21a+7=0 | | y=-24(x-12)-24 | | (3f-4)(3f+4)= | | 7x+x-5=7x+3 | | 24=10(x-1)+4x+x+4 | | 7m+5=58 | | 2n+5=4(n+2)-h | | 23m-2=0 | | y=-24(x-12)+(-24) | | 3n-4x+9n=2 | | -22=-p-(12) | | 3/4n=-5 | | 5(2x+7)=35 | | 2a+3=35 | | 2x+3/x=7/4 | | (X-3)/25 | | x^4-x=5 | | k/9+6=4 | | 5+4n=6+2n | | -60m+747=747 | | 5+4n=6+22n | | 56x^2-15x+1=0 | | -3x-3=7x+57 | | 4/3x+3/4(x-1/2) | | 2x-2y+4z=6 | | 5z+4-z=6+3z-7 |

Equations solver categories