If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2=8x=0
We move all terms to the left:
5x^2-(8x)=0
a = 5; b = -8; c = 0;
Δ = b2-4ac
Δ = -82-4·5·0
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-8}{2*5}=\frac{0}{10} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+8}{2*5}=\frac{16}{10} =1+3/5 $
| 3−8c=35 | | -2w-4+7=3w+18 | | 28a-4=80 | | 2x-5+6x=5x+4 | | 5x-27=-5+-1 | | (|5+3w|)/(-2)=-1 | | 4x-28=3-4x | | X-27=-(27z | | F(18)=-5/4t+4 | | 3(x–2)=2(x–3) | | 4+7m-3m=7m-5 | | Z=3a+3 | | 4(x-5)+15=35 | | j/5=3/4 | | a5=4(5) | | 3/4x-1=2/3x+2 | | 16x+10=13x-4 | | x/4=3.14 | | 2–6x=-3x+16–6x | | 0=4*4-2x | | -3(x+4)+1=4-3(2x+3)-1 | | 5/9s=5 | | (1/z-2)-(1/z+2)=4/(z^2)-4 | | 32x2+5=55 | | -g+7=1 | | 2–6x=-3x+16–6x | | –2z+3=8z−9z+5 | | 8(5)=5y | | 1/2x-1/3x=-17/4 | | -x-203=57+12x | | 2(5x-28)=3(4x-48) | | 2x+14−5x=11−3x+3 |