If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-355=0
a = 5; b = 0; c = -355;
Δ = b2-4ac
Δ = 02-4·5·(-355)
Δ = 7100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7100}=\sqrt{100*71}=\sqrt{100}*\sqrt{71}=10\sqrt{71}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{71}}{2*5}=\frac{0-10\sqrt{71}}{10} =-\frac{10\sqrt{71}}{10} =-\sqrt{71} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{71}}{2*5}=\frac{0+10\sqrt{71}}{10} =\frac{10\sqrt{71}}{10} =\sqrt{71} $
| (5x+3)=78 | | (5x+3)+78=180 | | 2d(d-5)-3(5-d)=0 | | 11=d+5 | | x+0.147x=40.61 | | F(n)=4n+4 | | 12b+-11b=18 | | 8(6-5x)=4(3-x) | | x+1/6=2x+5/6 | | 6(u-7)=-12 | | 40=4-9y | | P^2+9p+7=0 | | 6{0}+36=8x | | (3^5x)(1/9)^1-4x=81^x+1 | | 21x+20=11x | | -5-6a=-5a | | (x-4)(x-3)=0.5x(x-4) | | 8^3x-9-12=500 | | 11y-215=30-24y | | 6-7x=6x+4 | | 4^3n+6=1 | | 6m^2=36m | | 1=3-v | | 2x+5=3x-70 | | -4=16/y | | 2x-19=19+x | | 2(t+17)=2 | | 2^3x+1=4x | | 5x+(1/2)=12 | | 3^y+4=(1/9) | | 2x+75=55 | | 4(x+3)+2(×+1)=-2(-4×-2) |