If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-23x+120=4x^2
We move all terms to the left:
5x^2-23x+120-(4x^2)=0
determiningTheFunctionDomain 5x^2-4x^2-23x+120=0
We add all the numbers together, and all the variables
x^2-23x+120=0
a = 1; b = -23; c = +120;
Δ = b2-4ac
Δ = -232-4·1·120
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-23)-7}{2*1}=\frac{16}{2} =8 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-23)+7}{2*1}=\frac{30}{2} =15 $
| 5j=795 | | 452i-124=-98 | | 22/6=x/15 | | -3p+8=5-(12+4) | | 15x2+11x−11=0 | | -3p+8=-(12p+4) | | 2s=84 | | 5(x-1)=26(x-10) | | 17/x=19/24 | | 6=w5 | | 1.65=x-9.8/78.8 | | -6y+3(y-2)=9 | | 2x+40=x=40 | | -3(x+5)=-55 | | 7g+4g=55 | | 180=10a | | n(n+3)=40 | | 3x-150=15 | | 3N=3x5 | | 8x-13+7x-17=0 | | 8/3x-2=(2/3)x-12 | | 3(b-2)-4(2b+510=9 | | 4(u-6)=7u-39 | | n(n+3n)=40 | | x^2-74=7 | | 4(0.5n-3)=n0.25(12-8n) | | 3x+150=15 | | x-7+5x=24 | | 2.3=x/6 | | 3x+150=7 | | 4x-23=14 | | 5x2+1=6× |