5x2-20=(x+2)(x-2)

Simple and best practice solution for 5x2-20=(x+2)(x-2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5x2-20=(x+2)(x-2) equation:



5x^2-20=(x+2)(x-2)
We move all terms to the left:
5x^2-20-((x+2)(x-2))=0
We use the square of the difference formula
5x^2+x^2+4-20=0
We add all the numbers together, and all the variables
6x^2-16=0
a = 6; b = 0; c = -16;
Δ = b2-4ac
Δ = 02-4·6·(-16)
Δ = 384
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{384}=\sqrt{64*6}=\sqrt{64}*\sqrt{6}=8\sqrt{6}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{6}}{2*6}=\frac{0-8\sqrt{6}}{12} =-\frac{8\sqrt{6}}{12} =-\frac{2\sqrt{6}}{3} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{6}}{2*6}=\frac{0+8\sqrt{6}}{12} =\frac{8\sqrt{6}}{12} =\frac{2\sqrt{6}}{3} $

See similar equations:

| 8x+2=5×4x | | 180=(5z-3)(4z+3) | | (7x/9)+(x/2)-(17/9)=(2/3) | | 12-8+5d+4d-6d= | | -2(z+19)=40 | | 4x+54=20 | | (5n/4)+(7/4)=(-3/4) | | 14=31-3x | | 5+(1)/(4)x=2x-9 | | 3x+120=150 | | 4r-r+6r+2r-5r= | | -f+6=-8 | | 2x+1=-210 | | 5=−2x+9 | | -6=j/3-10 | | 3(2x–4)=24 | | -15x+5+24x=104 | | 7-x=9x+8-7x-1-3x | | -3k=16+k | | 8+-8+12x=32+-8 | | 5=j/3-4- | | 2u=-15+3u | | 12x-5=3+2x | | 4x+86=15-2 | | 6+4n+4+3n=2+3n | | 75-x=85-2x | | 11−12x=8−2x | | 2s+5(6+5s)=3s+4s | | 2x+-1.5=-1 | | 3x+12-12=25 | | r/2-13=16 | | 5(y+3)/9=40 |

Equations solver categories