If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+6x=0
a = 5; b = 6; c = 0;
Δ = b2-4ac
Δ = 62-4·5·0
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6}{2*5}=\frac{-12}{10} =-1+1/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6}{2*5}=\frac{0}{10} =0 $
| -x+17=22 | | -4x+13=-2x+9 | | x+4=-4x-26 | | -4x+21=-5x+22 | | 8x-40=20-4 | | x=4,3+3,7 | | x=+4,3+3,7 | | 6x=48−10x | | 2+5(x–1)=–(3–5x) | | 2^x2+x+1=8 | | 5f-3=3f+1 | | 7x+11=4+2x | | 6x(x-12)-3=0 | | 0=-3(12-x)6x | | 5-7x=-4(x+1) | | 3x10=4x+5 | | 2k²-24k+80=0 | | n-14=82 | | 4x+11=2-5x | | n+14=82 | | (x+3)•+2=4x+2 | | 82-n=14 | | 82+n=14 | | −3(3−2v)+3v=−81 | | 5⋅(x+2)=20 | | 2x^+14x-24=0 | | x9+1=7 | | x/6+4=19 | | x+x4=90 | | -2x=-1.4 | | 7{y+5}=49 | | -5x/5=-10/5 |