If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+6x+1=0
a = 5; b = 6; c = +1;
Δ = b2-4ac
Δ = 62-4·5·1
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-4}{2*5}=\frac{-10}{10} =-1 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+4}{2*5}=\frac{-2}{10} =-1/5 $
| 6x-4+7=26 | | (x+2)−8x−5=−3x+9−2(x+6) | | 72=6(v-80) | | 28h+22=42+15 | | 4(R+3r)=1 | | 28=4y+6 | | 7x-10x+4=30 | | (4/6)x-2x+(8/3)=4/3 | | 23-2y=9 | | 7x-10xx+4=30 | | 6x2+2x+1=0 | | 61/3×a=312/3a= | | 1/x-3+2=9/x-3 | | G(y)=7-3(7/3) | | t/4-3=2 | | 56=4w+20 | | 3/x+2=3/5x+21/10 | | .5(7t-6)=(t+6)/4 | | 10x2+6x+1=0 | | 2t+2=14 | | r=1-2R/4 | | 15+x=-15-9x | | Y=3(x+3/3)-1 | | X+8/10=1/5+x-3/3 | | 5(y+2)+7y=-38 | | 4x-8=8x-4 | | (5/u+3)=(-3/2u+6)+2 | | 3(x+2)-5=2x+8 | | (3y+2)(6+y)=0 | | 8x2+4x+1=0 | | 6x+10=4(x-3) | | -2(-5x-12)=5(2x+4)+4 |