If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+35=125
We move all terms to the left:
5x^2+35-(125)=0
We add all the numbers together, and all the variables
5x^2-90=0
a = 5; b = 0; c = -90;
Δ = b2-4ac
Δ = 02-4·5·(-90)
Δ = 1800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1800}=\sqrt{900*2}=\sqrt{900}*\sqrt{2}=30\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-30\sqrt{2}}{2*5}=\frac{0-30\sqrt{2}}{10} =-\frac{30\sqrt{2}}{10} =-3\sqrt{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+30\sqrt{2}}{2*5}=\frac{0+30\sqrt{2}}{10} =\frac{30\sqrt{2}}{10} =3\sqrt{2} $
| (−u−8)(5u+2)=0 | | 35=2x+2(4x-2) | | 7n+11=2n+46 | | 4x+6x+6=146 | | p=2(4Y-1)+2(3Y+1) | | 95=10s+5 | | -6x^2-2-3x=-8−6x2−2−3x=−8 | | 13+3h=19 | | 10n+16=4n+4 | | −14+2r=2 | | 14+6x=92 | | -7(3x+6)=-3(4x-2) | | x–9=–14 | | (n+8)^2=0 | | -3(2x-5=-45 | | 5n+12=3n+40 | | -4+y=14 | | 22+2u=54 | | 9n+9=2n+65 | | 1/2x=2x-30+30 | | (2x-5)^2+5x(x-4)=(3x+2)(3x-2)-11 | | –2x=12 | | 3+49x=21x51 | | 5(c+49)=20 | | 4.7x–2.1x=7x | | (3y-5)=(2y+10)=180 | | 3=3m-3 | | 4x-20=6x+18 | | 8n-22=27+n | | v/2+1=-1 | | 5=11m | | 4a-10a=44 |