If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+19x+12=0
a = 5; b = 19; c = +12;
Δ = b2-4ac
Δ = 192-4·5·12
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-11}{2*5}=\frac{-30}{10} =-3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+11}{2*5}=\frac{-8}{10} =-4/5 $
| 4w+4)/4=4W=3 | | 9/a=5/a-3 | | 17+5p=27 | | 4x12-8x=2x-14 | | 3x+4=(5x-6)-2x | | 9x+7-x=x+13+6x | | 2/3w=1/4-3/18 | | 3²x-⁷=27 | | X-4=11x= | | M+2m-5=0 | | 3r^2=-42 | | 2x+3x+2=1 | | 4x^-3=12x^-5 | | 20x+4000-40x=30×250 | | 0.2x-5(0.3-2.1x)=1.2 | | 2(2z-3)=3 | | 11/2m=2 | | 54=2/3r3 | | 2(-8x-3)=-134 | | 3x+1/4-x+2/5=2 | | 2/3a+1/a=3 | | -19+x=53-3x | | x³-10x=-9 | | -7(1+4x)-6=211 | | x-10x²+9=0 | | 20x+4000(40-x)=30×250 | | 5n+50=85. | | x²-50x-600=0 | | Y+3=12.y= | | (3x+32)+(87-2x)+(3x+32)=180 | | 0=9f-9f | | 2w-1=-7+2w |