If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+14x+3=0
a = 5; b = 14; c = +3;
Δ = b2-4ac
Δ = 142-4·5·3
Δ = 136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{136}=\sqrt{4*34}=\sqrt{4}*\sqrt{34}=2\sqrt{34}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{34}}{2*5}=\frac{-14-2\sqrt{34}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{34}}{2*5}=\frac{-14+2\sqrt{34}}{10} $
| 15t-3t-12t-t+3t=16 | | 2x+6=-2x=-2 | | 9x+27=2×6x | | (y×9)-300=183 | | 9c-18c-11c=20 | | x+10+2x-2+x+15=180 | | 3(2-p)=5p | | 704x=30+4x | | 8e+9/2=9-5e | | 15x=7(2x-3) | | 2/3x=285 | | 4z-6-7z=+3 | | 5x-8=9x-29 | | 5a^2+8a+3=(a+1) | | 24x-19=16x=13 | | 8y+1=3y-6 | | 5/8g=1/4+6 | | 5/8g=1/4g+6 | | 4x-4=-1x=1 | | 13-1x+14=6 | | 6+7x=3x+4 | | 2(2.5+1.5x)=3×+5 | | 7x+13x-6=4(5x+8) | | 2(40−5y)=10y+5(1−y) | | 20+0.44x=19+1.69x. | | 11x+2=89 | | 3q+62=65q | | 2x-4(3+2x)+8=10x-4 | | 3.2+2(y–1.2)=12.8 | | 3x+41=4x+28 | | i/2=35 | | (2,5x-5)(x-9)=0 |