If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+13x+4=0
a = 5; b = 13; c = +4;
Δ = b2-4ac
Δ = 132-4·5·4
Δ = 89
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-\sqrt{89}}{2*5}=\frac{-13-\sqrt{89}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+\sqrt{89}}{2*5}=\frac{-13+\sqrt{89}}{10} $
| (2x+1)(x+3)=117 | | (-¾+43)+a=0 | | 52=4r | | 5x-(x+5)=4(x-2)+4 | | X+10y=52 | | 3/5n=-6 | | -4x^2-10x+9=5 | | 8(x+4)+2(x+4)=6x-6 | | W+1/3=w+9/15 | | 2/3(3x+4)-6=20/3 | | 2(5m)+m=11m | | 52=6x+x-4 | | 50=2x+12. | | Y^2+2x^2-5=0 | | 5/6+2x=3x-2/3 | | 5/6=x-2/3 | | (x–4^)2=5 | | 6x-6x=18-6 | | 7/8x=80 | | (2+u)(5u-6)=0 | | 6=x+9/2 | | 1/8x14=83 | | 4u^2+38u+34=0 | | x/16=30/40 | | 2x+14=2+8x | | 3x-7(4+2x)=-+2 | | 8x+3x2=6x2-3 | | (x+40)(4x-5)=(6x+20) | | 3x2+4=25 | | (3x-2)(7x-6)(x)=x | | -27=3n | | 25x^+16=0 |