(x+40)(4x-5)=(6x+20)

Simple and best practice solution for (x+40)(4x-5)=(6x+20) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+40)(4x-5)=(6x+20) equation:



(x+40)(4x-5)=(6x+20)
We move all terms to the left:
(x+40)(4x-5)-((6x+20))=0
We multiply parentheses ..
(+4x^2-5x+160x-200)-((6x+20))=0
We calculate terms in parentheses: -((6x+20)), so:
(6x+20)
We get rid of parentheses
6x+20
Back to the equation:
-(6x+20)
We get rid of parentheses
4x^2-5x+160x-6x-200-20=0
We add all the numbers together, and all the variables
4x^2+149x-220=0
a = 4; b = 149; c = -220;
Δ = b2-4ac
Δ = 1492-4·4·(-220)
Δ = 25721
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{25721}=\sqrt{289*89}=\sqrt{289}*\sqrt{89}=17\sqrt{89}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(149)-17\sqrt{89}}{2*4}=\frac{-149-17\sqrt{89}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(149)+17\sqrt{89}}{2*4}=\frac{-149+17\sqrt{89}}{8} $

See similar equations:

| 3x2+4=25 | | (3x-2)(7x-6)(x)=x | | -27=3n | | 25x^+16=0 | | g/19=25 | | 2b-10=8b+50 | | 6.37-5.2x=-11.83 | | w+201=975 | | 64x+16=-28x | | 0=c^2-11c+32 | | 6x/10x=10x/14x+16 | | 20w=620 | | 9w-4=78 | | s/7=18 | | F(t)=2t-7 | | -964x12=720 | | 61=4x-11 | | 24=-3d | | 2x+17=3+9x | | 3x+95+x+25+80=360 | | 2x^+18=12x | | x+2x+(-x)=2-x+4 | | 6n-(4n+2)=(-28) | | n^2+9n+13=0 | | 662=r-~46 | | 2x-10/2-x=5 | | 662=r-^46 | | 3x-50/7=4x | | 5x+40=10+15x | | 662=r-46 | | 2x-10/2=4x | | 662=r-47 |

Equations solver categories