If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x-5=(1/2)(10x-10)
We move all terms to the left:
5x-5-((1/2)(10x-10))=0
Domain of the equation: 2)(10x-10))!=0We add all the numbers together, and all the variables
x∈R
5x-((+1/2)(10x-10))-5=0
We multiply parentheses ..
-((+10x^2+1/2*-10))+5x-5=0
We multiply all the terms by the denominator
-((+10x^2+1+5x*2*-10))-5*2*-10))=0
We calculate terms in parentheses: -((+10x^2+1+5x*2*-10)), so:We add all the numbers together, and all the variables
(+10x^2+1+5x*2*-10)
We get rid of parentheses
10x^2+5x*2*+1-10
We add all the numbers together, and all the variables
10x^2+5x*2*-9
Wy multiply elements
10x^2+10x^2-9
We add all the numbers together, and all the variables
20x^2-9
Back to the equation:
-(20x^2-9)
-(20x^2-9)=0
We get rid of parentheses
-20x^2+9=0
a = -20; b = 0; c = +9;
Δ = b2-4ac
Δ = 02-4·(-20)·9
Δ = 720
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{720}=\sqrt{144*5}=\sqrt{144}*\sqrt{5}=12\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{5}}{2*-20}=\frac{0-12\sqrt{5}}{-40} =-\frac{12\sqrt{5}}{-40} =-\frac{3\sqrt{5}}{-10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{5}}{2*-20}=\frac{0+12\sqrt{5}}{-40} =\frac{12\sqrt{5}}{-40} =\frac{3\sqrt{5}}{-10} $
| 7x-6=-251 | | 5x2-49x+36=0 | | 9x^2-5x+26=0 | | 2.4x-9.6=4.8 | | 3e^2-17e-28=0 | | x^2-6x+8=0x= | | 12a+6=8 | | |2x-3|=1 | | 3(y-7)=-7(7+y) | | 1y+10=9y-2 | | 1/5=7y | | P=10+2x4 | | (7x-2)^2=31 | | 8b-2-10b=1 | | |2x-3|=3 | | 3(a+7)=25 | | 2-5/x^2=3/x | | 5(x-3)=7x+8 | | 1=7-(12-8x) | | -40-12x=-15x+11 | | -7=12n+2-6n | | x^2-3x-25=3 | | 8x-12=5x-21 | | P=10+2t | | F(-5)=3x+6 | | 3(y+4=24 | | 2x-4=12x+7 | | -4x-134=11x+181 | | k+2(k^2+2k+1)=0 | | x+2x+7=3x=7 | | -121=30k-63k | | 112+94=115+n |