If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-49x+36=0
a = 5; b = -49; c = +36;
Δ = b2-4ac
Δ = -492-4·5·36
Δ = 1681
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1681}=41$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-49)-41}{2*5}=\frac{8}{10} =4/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-49)+41}{2*5}=\frac{90}{10} =9 $
| 9x^2-5x+26=0 | | 2.4x-9.6=4.8 | | 3e^2-17e-28=0 | | x^2-6x+8=0x= | | 12a+6=8 | | |2x-3|=1 | | 3(y-7)=-7(7+y) | | 1y+10=9y-2 | | 1/5=7y | | P=10+2x4 | | (7x-2)^2=31 | | 8b-2-10b=1 | | |2x-3|=3 | | 3(a+7)=25 | | 2-5/x^2=3/x | | 5(x-3)=7x+8 | | 1=7-(12-8x) | | -40-12x=-15x+11 | | -7=12n+2-6n | | x^2-3x-25=3 | | 8x-12=5x-21 | | P=10+2t | | F(-5)=3x+6 | | 3(y+4=24 | | 2x-4=12x+7 | | -4x-134=11x+181 | | k+2(k^2+2k+1)=0 | | x+2x+7=3x=7 | | -121=30k-63k | | 112+94=115+n | | 10x-160=3x+71 | | -4.9x^2-78x-150=0 |