5x-1=(9x+1)(7x-9)

Simple and best practice solution for 5x-1=(9x+1)(7x-9) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5x-1=(9x+1)(7x-9) equation:



5x-1=(9x+1)(7x-9)
We move all terms to the left:
5x-1-((9x+1)(7x-9))=0
We multiply parentheses ..
-((+63x^2-81x+7x-9))+5x-1=0
We calculate terms in parentheses: -((+63x^2-81x+7x-9)), so:
(+63x^2-81x+7x-9)
We get rid of parentheses
63x^2-81x+7x-9
We add all the numbers together, and all the variables
63x^2-74x-9
Back to the equation:
-(63x^2-74x-9)
We add all the numbers together, and all the variables
5x-(63x^2-74x-9)-1=0
We get rid of parentheses
-63x^2+5x+74x+9-1=0
We add all the numbers together, and all the variables
-63x^2+79x+8=0
a = -63; b = 79; c = +8;
Δ = b2-4ac
Δ = 792-4·(-63)·8
Δ = 8257
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(79)-\sqrt{8257}}{2*-63}=\frac{-79-\sqrt{8257}}{-126} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(79)+\sqrt{8257}}{2*-63}=\frac{-79+\sqrt{8257}}{-126} $

See similar equations:

| 6(3y+5=39 | | 3z+6z=9z | | -44=-2x-4 | | 6x+11+10x-3+13x-5=180 | | 1/4(32x+28)-3x=18x-5(3x+7) | | 16x-8=60 | | -8-y=-y | | 2612+9x=8-4xx= | | 4.75x+54=2.5 | | 3=y/2-12 | | 9-3x(x-2)=x-9 | | x-44.9=-12.4 | | -8-8s=-9s | | 9x-4=5x+16= | | 6(7x+1/6)=18x-47 | | 400+0.02x=500+15x | | -3h=-10-h | | 6c-2/2=11 | | 2y+y+3=9 | | 225÷r=15 | | -(5-a)=-25 | | 48x^2+80x-63=0 | | 2/4x+18=12 | | 10g=10g+10 | | 2x/3+9=11 | | 2x+(x+8)+x=x | | 4x+10=15-2x | | 2x/4+18=12 | | -7=n+18 | | 17−7x=−11 | | .7x+8=11x | | 3+10u=10u |

Equations solver categories