5x-(x+7)+4x=7x(x-1)

Simple and best practice solution for 5x-(x+7)+4x=7x(x-1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5x-(x+7)+4x=7x(x-1) equation:



5x-(x+7)+4x=7x(x-1)
We move all terms to the left:
5x-(x+7)+4x-(7x(x-1))=0
We add all the numbers together, and all the variables
9x-(x+7)-(7x(x-1))=0
We get rid of parentheses
9x-x-(7x(x-1))-7=0
We calculate terms in parentheses: -(7x(x-1)), so:
7x(x-1)
We multiply parentheses
7x^2-7x
Back to the equation:
-(7x^2-7x)
We add all the numbers together, and all the variables
8x-(7x^2-7x)-7=0
We get rid of parentheses
-7x^2+8x+7x-7=0
We add all the numbers together, and all the variables
-7x^2+15x-7=0
a = -7; b = 15; c = -7;
Δ = b2-4ac
Δ = 152-4·(-7)·(-7)
Δ = 29
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-\sqrt{29}}{2*-7}=\frac{-15-\sqrt{29}}{-14} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+\sqrt{29}}{2*-7}=\frac{-15+\sqrt{29}}{-14} $

See similar equations:

| y=(1.22)2* | | x+(x-80°)=180 | | 6x-15+2x+3=180 | | 3x2-6x+9=0/3 | | 4(c+1)=4 | | y=44(1.01) | | 2(t+15)=-16 | | x+x/2+x/6=180 | | 3x-240=3 | | y=(1.044)* | | 4x+1/2=270 | | 16/g;=4 | | .075x+5=2.5x-2 | | 10=0.5.f | | 32y+48=16(2y+48) | | 3a=5.7 | | 32y+48=16(32y+48) | | 6/x=21/3.5 | | 32y+48=16(3y+2) | | 132+7r=538 | | 32y+48=16(2y+3) | | 12d-6d-5d=14 | | (x-1)^3+3/2I(2x+3)^2+(-1-x)^3=18x | | x2–3x–12=0 | | 5/6t=-1/6 | | 3y÷4y=49 | | 12u+3u-9u=6 | | 15c-11c-4c+2c=8 | | 18k-13k-5k+4k=12 | | X^3+49x+90=0 | | -16k-8k+13k=-11 | | 9k-9k+5k=20 |

Equations solver categories