5x+7=72/x+1

Simple and best practice solution for 5x+7=72/x+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5x+7=72/x+1 equation:



5x+7=72/x+1
We move all terms to the left:
5x+7-(72/x+1)=0
Domain of the equation: x+1)!=0
x∈R
We get rid of parentheses
5x-72/x-1+7=0
We multiply all the terms by the denominator
5x*x-1*x+7*x-72=0
We add all the numbers together, and all the variables
6x+5x*x-72=0
Wy multiply elements
5x^2+6x-72=0
a = 5; b = 6; c = -72;
Δ = b2-4ac
Δ = 62-4·5·(-72)
Δ = 1476
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1476}=\sqrt{36*41}=\sqrt{36}*\sqrt{41}=6\sqrt{41}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6\sqrt{41}}{2*5}=\frac{-6-6\sqrt{41}}{10} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6\sqrt{41}}{2*5}=\frac{-6+6\sqrt{41}}{10} $

See similar equations:

| 3(x-12)=-45 | | 9x^+6x-3=0 | | 2(2X+6)=4(x-3) | | 12x=-168 | | 3x–(27+39)=18 | | x^2+(x^2+7)=17 | | 9-3x=5x-23 | | X*(x+7)=17 | | 3/2u−2/11=7/8 | | 10x+2(x+5)=4-2x | | -2,5(4r+8)=r(10-5) | | 7x-8=9x-14 | | (2x+4)/3=(5x-8)/2 | | 6n-16=2n+20 | | (2x+4)3=(5x-8)2 | | 85+120+101+(3x-6)=360 | | 4(n+3)=6n+82n | | 25*2×+36=60x | | x4+-16x2+24x+-9=0 | | 20-3x=5x+12 | | 2x+4/3=5x-8/2 | | 6t^2+5t-10=0 | | 11x-5+6x+8=3x+31 | | 6x=(4x+50) | | 12h–11h=2 | | 23x-3=3x+2 | | 4x-9=1-2× | | 5–4g=-5g | | X/2+4=3x/4 | | 4x^2+12x-34=0 | | 2x+13+57+3×=180 | | 6-4^x=-62 |

Equations solver categories