If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X(X+7)=17
We move all terms to the left:
X(X+7)-(17)=0
We multiply parentheses
X^2+7X-17=0
a = 1; b = 7; c = -17;
Δ = b2-4ac
Δ = 72-4·1·(-17)
Δ = 117
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{117}=\sqrt{9*13}=\sqrt{9}*\sqrt{13}=3\sqrt{13}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-3\sqrt{13}}{2*1}=\frac{-7-3\sqrt{13}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+3\sqrt{13}}{2*1}=\frac{-7+3\sqrt{13}}{2} $
| 3/2u−2/11=7/8 | | 10x+2(x+5)=4-2x | | -2,5(4r+8)=r(10-5) | | 7x-8=9x-14 | | (2x+4)/3=(5x-8)/2 | | 6n-16=2n+20 | | (2x+4)3=(5x-8)2 | | 85+120+101+(3x-6)=360 | | 4(n+3)=6n+82n | | 25*2×+36=60x | | x4+-16x2+24x+-9=0 | | 20-3x=5x+12 | | 2x+4/3=5x-8/2 | | 6t^2+5t-10=0 | | 11x-5+6x+8=3x+31 | | 6x=(4x+50) | | 12h–11h=2 | | 23x-3=3x+2 | | 4x-9=1-2× | | 5–4g=-5g | | X/2+4=3x/4 | | 4x^2+12x-34=0 | | 2x+13+57+3×=180 | | 6-4^x=-62 | | 64=2^x | | 4c+5=1 | | 1-x/0.3=3 | | (2x+5)^2=x(11x+15)+27 | | 5x+2+2x=12-3x | | 25x^2+30x+9=16 | | 49=14+7x | | 6x+2x+12=10x-4x+20 |