If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x+4=(2/3)(10-x)
We move all terms to the left:
5x+4-((2/3)(10-x))=0
Domain of the equation: 3)(10-x))!=0We add all the numbers together, and all the variables
x∈R
5x-((+2/3)(-1x+10))+4=0
We multiply parentheses ..
-((-2x^2+2/3*10))+5x+4=0
We multiply all the terms by the denominator
-((-2x^2+2+5x*3*10))+4*3*10))=0
We calculate terms in parentheses: -((-2x^2+2+5x*3*10)), so:We add all the numbers together, and all the variables
(-2x^2+2+5x*3*10)
We get rid of parentheses
-2x^2+5x*3*10+2
Wy multiply elements
-2x^2+150x*1+2
Wy multiply elements
-2x^2+150x+2
Back to the equation:
-(-2x^2+150x+2)
-(-2x^2+150x+2)=0
We get rid of parentheses
2x^2-150x-2=0
a = 2; b = -150; c = -2;
Δ = b2-4ac
Δ = -1502-4·2·(-2)
Δ = 22516
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{22516}=\sqrt{4*5629}=\sqrt{4}*\sqrt{5629}=2\sqrt{5629}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-150)-2\sqrt{5629}}{2*2}=\frac{150-2\sqrt{5629}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-150)+2\sqrt{5629}}{2*2}=\frac{150+2\sqrt{5629}}{4} $
| y=6500(1.01)^20 | | -25x^2+9=-520 | | (x+6)^2=400 | | 5b+11=59 | | -5(3t-2)+6t=7t-3 | | -16t^2+30t=10 | | 23v^2+47v=0 | | 3(x+1)+2=5x-2(-2+x) | | 2^1073741824=x | | 3x^2-16x-12=3x^2+4x-20x-12 | | 0.03x+40=0.05x | | 11x-2=19x+3=9x+1=180 | | -2a^2+4a+16=0 | | 19/86=17/x | | 14-9x=50= | | -3(h-18)=-3 | | 14-10x-10+7x=-74 | | 60x=195+35 | | 74+64+6x-12=180 | | 80+41+4x-9=180 | | 60x=195-35 | | 8d+12=14 | | 3(X+1)-5x=-6x+19 | | 5a=8a-12 | | -89=10t-19 | | 73x60x38=0.5 | | 72-16=8m | | 7a=(3a-9) | | X^2+y^2-8X-10Y+16=0 | | 12=y+-14 | | 3/4+m=7/4 | | 9/5=p+3/5 |