5x+25/8x-72=1

Simple and best practice solution for 5x+25/8x-72=1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5x+25/8x-72=1 equation:



5x+25/8x-72=1
We move all terms to the left:
5x+25/8x-72-(1)=0
Domain of the equation: 8x!=0
x!=0/8
x!=0
x∈R
We add all the numbers together, and all the variables
5x+25/8x-73=0
We multiply all the terms by the denominator
5x*8x-73*8x+25=0
Wy multiply elements
40x^2-584x+25=0
a = 40; b = -584; c = +25;
Δ = b2-4ac
Δ = -5842-4·40·25
Δ = 337056
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{337056}=\sqrt{16*21066}=\sqrt{16}*\sqrt{21066}=4\sqrt{21066}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-584)-4\sqrt{21066}}{2*40}=\frac{584-4\sqrt{21066}}{80} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-584)+4\sqrt{21066}}{2*40}=\frac{584+4\sqrt{21066}}{80} $

See similar equations:

| 8+5x=3+4x | | 2/a-5=17 | | 18f+2=6f+7 | | -8(x-6)+2=50 | | 7=3j−2 | | –4=8+3b | | 30x=10x+50 | | (x-8)^2=45 | | Y=nP3 | | 8a=8a | | y2−–7=10 | | y2− –7=10 | | 12=3.14r^2 | | −0.15=  y0.8+0.60.8y​+0.6 | | 3m–2=4 | | −0.15=  y0.8+0.60.8y​ +0.6 | | 95=5x-5 | | X+2x+2x+x=96 | | 3(2n+3)+5(2n-9)=4(2n+5) | | F(x)=4x^2+x+5 | | 3x+4/5=2/3x+5 | | 40x+2=60 | | 4(5)^x=2500 | | 3p+8=2p-17 | | 51/2=5n | | 21=14-n/4 | | 2x^2+6x+9=29 | | 4(p+3)+2(p-1)=28 | | 11x+7=80 | | 4/9+4(x+1)=29/9-(x-7x)+1 | | 60=12x+8+7x+48 | | 12x+8+7x+48=60 |

Equations solver categories