5x+(13/2x)+264=410

Simple and best practice solution for 5x+(13/2x)+264=410 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5x+(13/2x)+264=410 equation:



5x+(13/2x)+264=410
We move all terms to the left:
5x+(13/2x)+264-(410)=0
Domain of the equation: 2x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
5x+(+13/2x)+264-410=0
We add all the numbers together, and all the variables
5x+(+13/2x)-146=0
We get rid of parentheses
5x+13/2x-146=0
We multiply all the terms by the denominator
5x*2x-146*2x+13=0
Wy multiply elements
10x^2-292x+13=0
a = 10; b = -292; c = +13;
Δ = b2-4ac
Δ = -2922-4·10·13
Δ = 84744
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{84744}=\sqrt{36*2354}=\sqrt{36}*\sqrt{2354}=6\sqrt{2354}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-292)-6\sqrt{2354}}{2*10}=\frac{292-6\sqrt{2354}}{20} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-292)+6\sqrt{2354}}{2*10}=\frac{292+6\sqrt{2354}}{20} $

See similar equations:

| 100X=105y | | 4x(x-4)=2x+8(x-4) | | 100,000=40t+100 | | 0=250t-4.9t^2 | | -(3-27)=-6c | | -147=-3(5a-11) | | 3x^2+11x-50=-8 | | 225=+5(4b+13) | | 11y+6=28 | | 11y+6=14 | | −4x+7=−1 | | 11y+6=48 | | 11y+6=12 | | 60=(-5a+10) | | 11y+6=61 | | 11y+6=31 | | 5x=7x-19 | | 11y+6=60 | | -9(23+8b)=-567 | | 3y+7=60 | | 17.5+44x=-6.5(3x-6) | | 8x-27=60 | | 17.5+4x=19.5-39 | | 100=4x+x | | 8x+-41=4x+35 | | Y=4x+7=-3x-21 | | 6(2x+4)=4(3x-6) | | x+4+7x-35=180 | | x+4+4x-8=60 | | Y=12x-x^2+3 | | 7y+19=11y-89 | | 7y+19=60 |

Equations solver categories