4x(x-4)=2x+8(x-4)

Simple and best practice solution for 4x(x-4)=2x+8(x-4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4x(x-4)=2x+8(x-4) equation:



4x(x-4)=2x+8(x-4)
We move all terms to the left:
4x(x-4)-(2x+8(x-4))=0
We multiply parentheses
4x^2-16x-(2x+8(x-4))=0
We calculate terms in parentheses: -(2x+8(x-4)), so:
2x+8(x-4)
We multiply parentheses
2x+8x-32
We add all the numbers together, and all the variables
10x-32
Back to the equation:
-(10x-32)
We get rid of parentheses
4x^2-16x-10x+32=0
We add all the numbers together, and all the variables
4x^2-26x+32=0
a = 4; b = -26; c = +32;
Δ = b2-4ac
Δ = -262-4·4·32
Δ = 164
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{164}=\sqrt{4*41}=\sqrt{4}*\sqrt{41}=2\sqrt{41}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-26)-2\sqrt{41}}{2*4}=\frac{26-2\sqrt{41}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-26)+2\sqrt{41}}{2*4}=\frac{26+2\sqrt{41}}{8} $

See similar equations:

| 100,000=40t+100 | | 0=250t-4.9t^2 | | -(3-27)=-6c | | -147=-3(5a-11) | | 3x^2+11x-50=-8 | | 225=+5(4b+13) | | 11y+6=28 | | 11y+6=14 | | −4x+7=−1 | | 11y+6=48 | | 11y+6=12 | | 60=(-5a+10) | | 11y+6=61 | | 11y+6=31 | | 5x=7x-19 | | 11y+6=60 | | -9(23+8b)=-567 | | 3y+7=60 | | 17.5+44x=-6.5(3x-6) | | 8x-27=60 | | 17.5+4x=19.5-39 | | 100=4x+x | | 8x+-41=4x+35 | | Y=4x+7=-3x-21 | | 6(2x+4)=4(3x-6) | | x+4+7x-35=180 | | x+4+4x-8=60 | | Y=12x-x^2+3 | | 7y+19=11y-89 | | 7y+19=60 | | 7y+19+11-89=180 | | 7y+19=11-89 |

Equations solver categories