5x(x+x)=3(3+5)

Simple and best practice solution for 5x(x+x)=3(3+5) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5x(x+x)=3(3+5) equation:



5x(x+x)=3(3+5)
We move all terms to the left:
5x(x+x)-(3(3+5))=0
We add all the numbers together, and all the variables
5x(+2x)-(38)=0
We add all the numbers together, and all the variables
5x(+2x)-38=0
We multiply parentheses
10x^2-38=0
a = 10; b = 0; c = -38;
Δ = b2-4ac
Δ = 02-4·10·(-38)
Δ = 1520
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1520}=\sqrt{16*95}=\sqrt{16}*\sqrt{95}=4\sqrt{95}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{95}}{2*10}=\frac{0-4\sqrt{95}}{20} =-\frac{4\sqrt{95}}{20} =-\frac{\sqrt{95}}{5} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{95}}{2*10}=\frac{0+4\sqrt{95}}{20} =\frac{4\sqrt{95}}{20} =\frac{\sqrt{95}}{5} $

See similar equations:

| a^2+a^2=89 | | 11x-15=8x+7 | | 10(s-9)=-151 | | 3x+5=-2(3x-x) | | 8-t=42 | | =7(3p+4)+5(2p+3) | | (5x-2)/4=12 | | 2(9-y)=3(y+16) | | 5(m+3)=3(m+9) | | 6x+13=—5 | | 15=-3-9x | | d/8+6=12 | | x=(x+28)/5 | | 2,5x^2+10x=0 | | x=x+28/5 | | 1/3k+5=14 | | 5(2x+3)=37-2(5x-1) | | 6x+15=(43) | | 3+4(x−1)=12x−15 | | 2+u/2=7 | | 12x-11x=73-30 | | F(x)=2x² | | 6x+15=1/2(11x+73) | | 60-q=19 | | x−8=4(x−1) | | x−30=5(x−9) | | 0.1x+0.1x*x=0.4 | | (3r+1)²+(r+2)²=6 | | 1x=43 | | (3p—4)²=16—6p | | (3p-4)²=16-6p | | 3-7n=12+4n |

Equations solver categories