5x(2-x)=4x(2x-5)-(3x-4)

Simple and best practice solution for 5x(2-x)=4x(2x-5)-(3x-4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5x(2-x)=4x(2x-5)-(3x-4) equation:



5x(2-x)=4x(2x-5)-(3x-4)
We move all terms to the left:
5x(2-x)-(4x(2x-5)-(3x-4))=0
We add all the numbers together, and all the variables
5x(-1x+2)-(4x(2x-5)-(3x-4))=0
We multiply parentheses
-5x^2+10x-(4x(2x-5)-(3x-4))=0
We calculate terms in parentheses: -(4x(2x-5)-(3x-4)), so:
4x(2x-5)-(3x-4)
We multiply parentheses
8x^2-20x-(3x-4)
We get rid of parentheses
8x^2-20x-3x+4
We add all the numbers together, and all the variables
8x^2-23x+4
Back to the equation:
-(8x^2-23x+4)
We get rid of parentheses
-5x^2-8x^2+10x+23x-4=0
We add all the numbers together, and all the variables
-13x^2+33x-4=0
a = -13; b = 33; c = -4;
Δ = b2-4ac
Δ = 332-4·(-13)·(-4)
Δ = 881
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(33)-\sqrt{881}}{2*-13}=\frac{-33-\sqrt{881}}{-26} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(33)+\sqrt{881}}{2*-13}=\frac{-33+\sqrt{881}}{-26} $

See similar equations:

| -6x-2=2 | | -5r+3(r-5)=-(2r+15) | | 3=4r-2 | | 5x-2(x-3)=6+5x-4 | | 0.25(8x+16)=4(x-5) | | x+2/3-x-1/5-1=0 | | 1/6y-11/9y-7/9=2/3 | | 13+5b=1+8b | | 4(6x-10=8x+40 | | 6-5c+8=(-2) | | 2h-(6h-5h)=-1 | | 6x+3x-10=x+14 | | 4=7x+4-7x | | v-8.3=2.68 | | 1/2x+7=17 | | 6(m-9)=8(m-8) | | 11x-4(x-3)=7×+4 | | h/4+9=20 | | 24x+8=-80 | | 4+10=3x+8 | | 5x+12=122 | | 1/3(n+1=1/6(3n-5) | | 7x-4+7=3 | | 5n+7=-6+2(4+5n) | | 64-(3x+3)=3(x+4)+x | | 4(3c-1)-6=10c+6 | | -12x+2(5+x)=-8(x-6) | | 3.4x=3400 | | 7x-4+7x=4 | | Y=-5x+70 | | 5.4g=24.6g | | 3d+14=11 |

Equations solver categories