If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x(2)+2x=180
We move all terms to the left:
5x(2)+2x-(180)=0
We add all the numbers together, and all the variables
5x^2+2x-180=0
a = 5; b = 2; c = -180;
Δ = b2-4ac
Δ = 22-4·5·(-180)
Δ = 3604
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3604}=\sqrt{4*901}=\sqrt{4}*\sqrt{901}=2\sqrt{901}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{901}}{2*5}=\frac{-2-2\sqrt{901}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{901}}{2*5}=\frac{-2+2\sqrt{901}}{10} $
| (5x(2))+2x=180 | | (4x-12)=(3x+4 | | 0.50(x+5)=10 | | v+4/5=14/3 | | 8x-1+42=180 | | (5)/(6)(x-4)=(1)/(2)(x-2) | | -5(x+2)-10(7-x)+4(3-x)=-67.5 | | 5x-45=2x+30 | | 90+(3x-1)+(5x+11)=180 | | (1/2)x+4=10x= | | -5(x-3)+1/2(x+4)=-22 | | 3(m-3-4(m+3)=0 | | m+m/5=48 | | 4n-4+n=-19 | | (x/2)+(x/6)=10 | | -5=2n-1-n | | c+-3=-7 | | 2m+30=7m+5 | | c+-3=7 | | (X-1)+(3x-2)+(6x-19)=180 | | 90+2x+46+5x-12=180 | | 6w=13.2 | | 117+3k=26 | | 5c-7=-4c+101 | | 4.2=c/4 | | 3x+4x+3-8=90 | | -2(-4x)=1/2(4+16x) | | 52=-4+10y | | 3x+3+4x-8=90 | | 3×+3+4x-8=90 | | e+57=283 | | 3b+1=3b+3 |