If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5v^2-36v-32=0
a = 5; b = -36; c = -32;
Δ = b2-4ac
Δ = -362-4·5·(-32)
Δ = 1936
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1936}=44$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-36)-44}{2*5}=\frac{-8}{10} =-4/5 $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-36)+44}{2*5}=\frac{80}{10} =8 $
| -3x+4+2x=-2x+9 | | 5x²-7x+1=0 | | 2+4x=-5x-25 | | 9(4a−2)=12(3a+8) | | y=2^90 | | (7x)-6=180 | | 4y^2-2=29 | | G-h=H+2 | | (1/7x+5)=(x/x+1) | | 5/12x-2/3=1/3x+11/12 | | (1-x)(1+x))=8 | | 2/100=x/360 | | (1-x)(1-x)=8 | | 5(4+t)=7t-2 | | 10x+5=12x+3 | | 4c;c=5 | | 4c;c=5 | | 6−9y=33 | | -6b=594 | | -638=22u | | 36-6k=-42 | | w/3+20=28 | | -4(t-99)=96 | | j/4-2=3 | | 3w=14 | | 10(p-90)=10 | | 4j-15=13 | | c-13/9=9 | | g/7+37=39 | | 7u+13=41 | | c+12/10=3 | | 44+2y=96 |