If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5u^2+15u=0
a = 5; b = 15; c = 0;
Δ = b2-4ac
Δ = 152-4·5·0
Δ = 225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{225}=15$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-15}{2*5}=\frac{-30}{10} =-3 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+15}{2*5}=\frac{0}{10} =0 $
| 4=d-60/7 | | 14+8b=46 | | r6+49=56 | | 6x-13=32 | | 5w2=-8w-3 | | 8x+12=4(3-4x) | | n/2+5=6 | | C2-9v+20=0 | | 5=3+-s | | 6v2-24v=0 | | 3x=58.5 | | 2(7x-11)=-36 | | f/8-28=20 | | (6+v)5v+2)=0 | | x+127=x+677 | | h/3-20=16 | | 2x2-2=3x | | 15x-2=14x+6 | | 2+3s=18 | | 13-4x=5+6x | | 4x+9-8(x+1)=3x+7 | | 15x-6=12x+5 | | y5=60 | | 3x=42-5 | | -m^2+5m=4 | | (5x-2)+(2x+15)=90 | | 5x-12=2x=24 | | (3x+94)=0 | | 150-5n=0 | | 100+10n=0 | | 6n+2n=64 | | 2(x-0.667)=0 |