If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5t^2+40t=0
a = 5; b = 40; c = 0;
Δ = b2-4ac
Δ = 402-4·5·0
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-40}{2*5}=\frac{-80}{10} =-8 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+40}{2*5}=\frac{0}{10} =0 $
| (8x+7)=(x+16) | | -2(b-8)=-(2b+3) | | -22=-30+x | | x=2,x=5 | | c-5/5-c=1 | | 14m-6-11m=21 | | 3|–6r|=19 | | (5x+3)/2=4 | | 2x+9-5=25+9 | | 2/5/m-4=16 | | 6s+2=17(s-2) | | -5(8+4x)+10(9-2x)=50 | | 2-7(n-3)=-5(2n-1) | | 3(2x+9)=-49+46 | | 3(17+3b)-b=115 | | -7x-16=6(x+6) | | 144x-16x^2=200 | | -2+7a=2a-12 | | p+52=9 | | -8x+7-6(x-1)=-6x-(7x-5)+6 | | (3x+18)+(6x-16)+43=180 | | x-(1/3x)+14=30 | | (X+27)=8x | | 3x(-5)-9=X | | 2/6v-1/7v+14=20 | | 2x-1+14=14 | | 3n-6(8+5n)=-129 | | 12(4+8x)=17. | | 20=5/4x+5 | | z=8(20)+40 | | -7x-16=(x+6) | | (5x+18)+(4x)+81=180 |