If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5t^2+15t-490=0
a = 5; b = 15; c = -490;
Δ = b2-4ac
Δ = 152-4·5·(-490)
Δ = 10025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{10025}=\sqrt{25*401}=\sqrt{25}*\sqrt{401}=5\sqrt{401}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-5\sqrt{401}}{2*5}=\frac{-15-5\sqrt{401}}{10} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+5\sqrt{401}}{2*5}=\frac{-15+5\sqrt{401}}{10} $
| 6/11-7b/11=30/11 | | 12+16x=42x | | 8y-13=43 | | 12+16x=28x | | -2.4-3x-1.4=-3x-1.8 | | 2(2x+1)=-4(4x-1)-5x | | 512+17x=2(17x+17)+2(17x-16) | | 4(2x+12)=7x-15 | | 19-y=12y-20 | | 3c+20=-5c-20 | | 2(3x+3)=78 | | 4-c=1/2 | | 2(5x+3)=-3(4x-5) | | 3x−8=(8x+4)/2 | | 44+4y=2(4y+5)+2(2y+5) | | 9x+7=44 | | .1375y+3.50(1-y)=8 | | -165-10x=-20x+5 | | 7p+15=180 | | -72-3v=-17v+12 | | 19−y=12y−20 | | 373-12x=14x+9 | | 39=-v+171 | | 34=28-2÷5y | | 7x-(3x+1)=23 | | 2(4b+5)=4(b-5) | | 9(2n+3)=9(7n+4)+8 | | 5(2r+4)=170 | | 12k-32=2(4k+2) | | 4(5x+2)=188 | | -20q+9=-20-19-16q | | -5(x-3)+2=-33 |