If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5t(t+12)=0
We multiply parentheses
5t^2+60t=0
a = 5; b = 60; c = 0;
Δ = b2-4ac
Δ = 602-4·5·0
Δ = 3600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3600}=60$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(60)-60}{2*5}=\frac{-120}{10} =-12 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(60)+60}{2*5}=\frac{0}{10} =0 $
| r-9=-16 | | 88/d=8d | | -4(3-x-(-3-5x)=-1+X | | 10+11=x+18 | | j-9=-1 | | 2^3x+1/8^2x=2^3x | | 0=6q | | 5x-9+6x=13 | | 1=r+7 | | 0=c+6 | | -0.8x^2+3x+1.5=0 | | -4(3-x)-(-3-5x)=-1 | | 3x+11=2/3x | | -5=q-8 | | e-1=8 | | j+1=1 | | s=3/2*s-30 | | 4(3-x+2x)=-3 | | 8x+6=(9x-30)° | | 2s+2=20 | | -4(3-x)=3 | | r-17.5=-64 | | 3(3-x)=-3-2 | | 3x-9=2x+19 | | 5+5x=x−23 | | (-5b)-12=18 | | 0.02x+(8000-x)0.03=210 | | 0.03x+(6000-x)0.04=214 | | (x+4)(4)=(7√5+√5)(√5) | | (x+4)(4)=(75+5)(5) | | -1=h-3 | | 4x-+x=3+10 |